
Introduction About the uses Processes

Scintillation mechanisms
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Introduction About the uses Processes

from fast electron to light emission
A crude description: nphoton= β.Eγ×S×Q

β: conversion yield into relaxed electron-hole pairs
S transfer yield from relaxed electron-hole pair to the activator
Q: luminescence quantum yield
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Introduction About the uses Processes

Solid description: discrete states & localized states

We need to complete the Energy diagram: Excitons

Energy bands diagram: semi-continuum of delocalized states

An excited state is: electron in the conduction band and hole in the
valence/core band

The electron-hole pair can be correlated or not

When correlated, it can form excitons

We need to complete the Energy diagram: Defects

The crystal can contain defects: unwanted and wanted

A defect brings its own set of energy level to the scheme: spatially
localized, but a large number of defects

unwanted defects → traps, parasitic luminescence, quenching centers

wanted defects → desired luminescence, trap engineering
(photostimulated x-ray imaging, dosimetry)
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Introduction About the uses Processes

Brief description of Excitons: 2 extreme cases

Wannier-Mott excitons

Weakly bound exciton - binding
energy ≃ 10 meV

Hydrogen like model: effective
mass of e & h; ϵr ...

Common in inorganic semi
conductor (AsGa, CdS...)

Can migrate → wavevector →
dispersion curve

Frenkel excitons

Tightly bound exciton - binding
energy ≃ 0.1 - 1eV

Transfer of excited state model
using Bloch wave function →
dispersion curves

Common in insulators (rare gas
crystals, alkali halides, organics
crystals)

Text book: M.Fox, Optical properties of Solids, Oxford Master Series
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Introduction About the uses Processes

Solid description: discrete states & localized states

Traps (We need to complete the Energy diagram)

Displaced ions, vacancies, impurities... can be electron or hole traps

It induces valence change. The reverse process (detrapping) may
occur with energy input: heat or light

With light → photostimulation (x-ray imaging)

With heat → thermostimulation (thermoluminescence if it leads to
emission of photons) (used in dosimetry) It brings some discrete
levels in the Gap
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Introduction About the uses Processes

Solid description: discrete states & localized states

Activators (We need to complete the Energy diagram)

Materials are generally doped to ”tune” the luminescence properties

From a chemical point of view: the dopant has to be compatible
with the host

→ Charge and volume compatibility for substitution

More flexible for interstitial positions

Each activator has its own set of energy levels

Positioning these levels depends on the interaction strength with the
host
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Introduction About the uses Processes

Some essential Books on Luminescent centers

christophe.dujardin@univ-lyon1.fr SPARTE summer school, Prague, 2022



Introduction About the uses Processes

Full Energy description of the solid (Energy ”levels”)
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Introduction About the uses Processes

Luminescence: Last stage of the scintillation process

Timing

Slow luminescence → Slow
scintillator

Fast luminescence → Fast or
Slow scintillator

Light yield

Selection rules

Electron phonon interactions

→ Temperature dependance

Concentration quenching

Energy tranfers to traps

...
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Introduction About the uses Processes

Luminescence: timing & light yield

decay time

about the timing properties

Population: n(t) in the excited state.

dn = −n(t)Wraddt (Wrad : spontaneous emission rate)

→ n(t) = n0e
−Wrad t = n0e

− t
τ

→ weak probability = slow decay

GAP

activator

Ii>

If>

spontaneous emission rate

Fermi Golden’s rule: Wrad = 2π
3ℏρ(ωif )|EEE loc |2|µif |2

ρ(ωif ): density of field oscillators at frequency

EEE loc :local field at the position of the emitting center

µif :transition dipole moment between Ii > and If >

As a result, τ depends on the selection rules, λ and on n
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Introduction About the uses Processes

Luminescence: timing & light yield→ Cartoon model

n(t) = volume of wine

decay time = time to make the
barrel empty

Wrad = diameter of the tap

Light yield = Volume of drunk
wine
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Introduction About the uses Processes

Luminescence: timing & light yield → Cartoon model

High Wrad → fast
Middle Wrad

Low Wrad → slow

but the luminescence yield is the same: 100%
(As example Eu3+ is very efficient despite the transition is forbidden f → f )
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Introduction About the uses Processes

Luminescence: timing & light yield→ Cartoon model

non-radiative processes

→ Wnr

dn = −n(t)(Wrad +Wnr )dt

n(t) = n0e
−(Wrad+Wnr )t = n0e

− t
τ

→ τ ↘ but the yield ↘

type of non-radiative processes

electron-phonon interactions

transfer toward non-radiative centers

concentration quenching

A hole in the barrel
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Introduction About the uses Processes

Overview of the processes

Primary interaction → first excitation: solid∗
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The initial situation: a hot electron and a deep hole
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Introduction About the uses Processes

Overview of the processes

Electron relaxation: connexion with optical constants ϵ

Electron displacement = electromagnetic flash

→ connected to the optical response of the solid (n∗ = ν + iκ)
(see D.Smith et.al, NIM B, 2006 for details as example)

Energy loss function: Im(− 1
ϵ )(∆E ,∆q)

∆E and ∆q are the energy and momentum transfer
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Introduction About the uses Processes

Relation with energy band diagram

Phonons

Im(-ε(ω)−1)

Excitons

Excitons

Auger e�ect

ionisation
primaire

t=0

E

Egap

Egap

0

2xEgap

EedgeELO Energy ΔE

core excitons

electron-hole pairs

core
band

Core
Band

Thermalisation Multiplication

conduction
band

conduction
band

valence
band

valence
 band

Phonons

Egap

0

2xEgap

time

christophe.dujardin@univ-lyon1.fr SPARTE summer school, Prague, 2022



Introduction About the uses Processes

Overview of the processes

Hot electron relaxation
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Inelastic scattering / multiplication process / impactmigration

→ 1 secondary ”excitation” & the primary electron loses the equivalent
energy
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Introduction About the uses Processes

Overview of the processes

Hole relaxation: Auger process (≈ cross-relaxation) & x-ray fluorescence
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→ 1 secondary ”excitation” & the primary hole lost some energy
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Introduction About the uses Processes

Overview of the processes

Auger process & multiplication: about the same
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Introduction About the uses Processes

Overview of the processes

At the end of the first relaxation stage E < Egap then interaction with
lower energies species (defects, phonon...)
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Introduction About the uses Processes

Overview of the processes

Still some migrations over tens of nanometers

Kirkin et. al. IEEE TNS2012
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Introduction About the uses Processes

Overview of the processes

When thermalized (relaxed), energy transfer toward lower energy species
(activator, traps & excitons)
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Introduction About the uses Processes

Overview of the processes

Several transfer processes are possible
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→ may induce delay, quenching, bright-burn: it depends on the
temperature
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Introduction About the uses Processes

Overview of the processes

Even with a fast emitter, the overall process can be slow
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Introduction About the uses Processes

Overview of the processes

An illustration of the evolution of the decay only due to the transfer
process (the same emitter: LiYF4:Ce

3+)

Belsky et. al. J.Phys. Chem. Lett. 2013
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Introduction About the uses Processes

Summary picture
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→ The light yield should be
proportional to the energy of
the primary particle.
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Introduction About the uses Processes

And it is not ....

With electrons

Valentine, IEEE TNS, 1998

With γ-rays

Chewpraditkul, IEEE TNS, 1998
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Introduction About the uses Processes

A few words about non-proportionnality

excitations can interact!

heat

2 excited states in
 a small volume

Interaction losses

→ concentration quenching for excitations

→ important effect of the spatial distribution of excitations
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Introduction About the uses Processes

A few words about non-proportionnality

Analytical model, Bizarri et. al. JAP 2009

How to analyze it?

Z-scan approach

J.Grim et. al. PRB 2013

effect on the decay CdWO4

Kirm et al., PRB, 2009

- and also K-dip spectroscopy (Khodyuk et. al., JAP, 2010)
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Introduction About the uses Processes

A few words about non-proportionnality

spread of the charges/excitations depends on the initial energy

→ from event to event the yield changes

→ bad for the energy resolution

→ the energy resolution is worse in non-proportional materials

→ it requires modeling of the spatial distribution of excitations
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Introduction About the uses Processes

A few words about non-proportionnality

An illustration of modeling the energy cascade / spatial distribution

Gao et al., JAP, 2013
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Introduction About the uses Processes

Concluding remark: take care with nanoscintillators

Escape of charges

10keV β in a 50nm NP (Gd2O3)

Thermalisation

+ traps, effective index of refraction, confinement effects ...
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Introduction About the uses Processes

A bit of litterature
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