Scintillation mechanisms

イロン イ団 と イヨン イヨン

from fast electron to light emission

A crude description: $n_{photon} = \beta . E_{\gamma} \times S \times Q$

- β : conversion yield into relaxed electron-hole pairs
- S transfer yield from relaxed electron-hole pair to the activator
- Q: luminescence quantum yield

Solid description: discrete states & localized states

We need to complete the Energy diagram: Excitons

- Energy bands diagram: semi-continuum of delocalized states
- An excited state is: electron in the conduction band and hole in the valence/core band
- The electron-hole pair can be correlated or not
- When correlated, it can form excitons

Solid description: discrete states & localized states

We need to complete the Energy diagram: Excitons

- Energy bands diagram: semi-continuum of delocalized states
- An excited state is: electron in the conduction band and hole in the valence/core band
- The electron-hole pair can be correlated or not
- When correlated, it can form excitons

We need to complete the Energy diagram: Defects

- The crystal can contain defects: unwanted and wanted
- A defect brings its own set of energy level to the scheme: spatially localized, but a large number of defects
- $\bullet\,$ unwanted defects \rightarrow traps, parasitic luminescence, quenching centers
- wanted defects \rightarrow desired luminescence, trap engineering (photostimulated x-ray imaging, dosimetry)

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Brief description of Excitons: 2 extreme cases

Wannier-Mott excitons

- Weakly bound exciton binding energy \simeq 10 meV
- Hydrogen like model: effective mass of e & h; ε_r...
- Common in inorganic semi conductor (AsGa, CdS...)
- Can migrate \rightarrow wavevector \rightarrow dispersion curve

Text book: M.Fox, Optical properties of Solids, Oxford Master Series

Brief description of Excitons: 2 extreme cases

Wannier-Mott excitons

- Weakly bound exciton binding energy $\simeq 10 \text{ meV}$
- Hydrogen like model: effective mass of e & h; ε_r...
- Common in inorganic semi conductor (AsGa, CdS...)
- Can migrate \rightarrow wavevector \rightarrow dispersion curve

Frenkel excitons

- Tightly bound exciton binding energy $\simeq 0.1$ 1eV
- Transfer of excited state model using Bloch wave function \rightarrow dispersion curves
- Common in insulators (rare gas crystals, alkali halides, organics crystals)

向下 イヨト イヨト

Text book: M.Fox, Optical properties of Solids, Oxford Master Series

Solid description: discrete states & localized states

Traps (We need to complete the Energy diagram)

- Displaced ions, vacancies, impurities... can be electron or hole traps
- It induces valence change. The reverse process (detrapping) may occur with energy input: heat or light
- \bullet With light \rightarrow photostimulation (x-ray imaging)
- With heat \rightarrow thermostimulation (thermoluminescence if it leads to emission of photons) (used in dosimetry) It brings some discrete levels in the Gap

Solid description: discrete states & localized states

Activators (We need to complete the Energy diagram)

- Materials are generally doped to "tune" the luminescence properties
- From a chemical point of view: the dopant has to be compatible with the host
- $\bullet \rightarrow$ Charge and volume compatibility for substitution
- More flexible for interstitial positions
- Each activator has its own set of energy levels
- Positioning these levels depends on the interaction strength with the host

E > < E >

Some essential Books on Luminescent centers

G. Blasse • B. C. Grabmaier	
LUMINESCEN MATERIALS	IT
Springer-Verlag	
Ó	

< 回 > < 三 > < 三 > -

э

christophe.dujardin@univ-lyon1.fr SPARTE summer school, Prague, 2022

Full Energy description of the solid (Energy "levels")

christophe.dujardin@univ-lyon1.fr SPARTE summer school, Prague, 2022

→ ★ 문 ► ★ 문 ► _ 문

Luminescence: Last stage of the scintillation process

Timing

- Slow luminescence \rightarrow Slow scintillator
- Fast luminescence \rightarrow Fast or Slow scintillator

Light yield

o ...

- Selection rules
- Electron phonon interactions
- $\bullet \ \to \ {\sf Temperature} \ {\sf dependance}$
- Concentration quenching
- Energy tranfers to traps

э

Luminescence: timing & light yield

decay time

- about the timing properties
- Population: n(t) in the excited state.
- $dn = -n(t)W_{rad}dt$ (W_{rad} : spontaneous emission rate)

•
$$\rightarrow$$
 $n(t) = n_0 e^{-W_{rad}t} = n_0 e^{-\frac{t}{\tau}}$

ullet \to weak probability = slow decay

A B > A B >

Luminescence: timing & light yield

decay time

- about the timing properties
- Population: n(t) in the excited state.
- $dn = -n(t)W_{rad}dt$ (W_{rad} : spontaneous emission rate)

•
$$\rightarrow$$
 $n(t) = n_0 e^{-W_{rad}t} = n_0 e^{-\frac{t}{\tau}}$

 $\bullet \ \rightarrow \mathsf{weak} \ \mathsf{probability} = \mathsf{slow} \ \mathsf{decay}$

spontaneous emission rate

- Fermi Golden's rule: $W_{rad} = \frac{2\pi}{3\hbar} \rho(\omega_{if}) |\mathcal{E}_{loc}|^2 |\mu_{if}|^2$
- $\rho(\omega_{if})$: density of field oscillators at frequency
- ${\cal E}_{loc}$:local field at the position of the emitting center
- μ_{if} :transition dipole moment between li > and lf >
- As a result, au depends on the selection rules, λ and on n

通 ト イ ヨ ト イ ヨ ト ー

Luminescence: timing & light yield \rightarrow Cartoon model

- n(t) =volume of wine
- decay time = time to make the barrel empty
- W_{rad} = diameter of the tap
- Light yield = Volume of drunk wine

∃ ► < ∃ ►</p>

Luminescence: timing & light yield \rightarrow Cartoon model

High $W_{rad} \rightarrow fast$ Middle W_{rad} Low $W_{rad} \rightarrow slow$ Image: Constraint of the second second

but the luminescence yield is the same: 100%

(As example Eu^{3+} is very efficient despite the transition is forbidden $f \rightarrow f$)

ゆう くらう くらう しゅ

Luminescence: timing & light yield \rightarrow Cartoon model

A hole in the barrel

Luminescence: timing & light yield \rightarrow Cartoon model

non-radiative processes

 $\bullet \rightarrow W_{nr}$

•
$$dn = -n(t)(W_{rad} + W_{nr})dt$$

•
$$n(t) = n_0 e^{-(W_{rad} + W_{nr})t} = n_0 e^{-\frac{t}{\tau}}$$

$$ullet
ightarrow au \searrow$$
 but the yield \searrow

type of non-radiative processes

- electron-phonon interactions
- transfer toward non-radiative centers
- concentration quenching

A hole in the barrel

Overview of the processes

Primary interaction \rightarrow first excitation: *solid**

The initial situation: a hot electron and a deep hole

- Electron relaxation: connexion with optical constants ϵ
- Electron displacement = electromagnetic flash
- \rightarrow connected to the optical response of the solid ($n^* = \nu + i\kappa$) (see D.Smith et.al, NIM B, 2006 for details as example)
- Energy loss function: $Im(-\frac{1}{\epsilon})(\Delta E, \Delta q)$
- ΔE and Δq are the energy and momentum transfer

• • = • • = •

Relation with energy band diagram

christophe.dujardin@univ-lyon1.fr SPARTE summer school, Prague, 2022

★ Ξ ► ★ Ξ ►

< (T) >

æ

Overview of the processes

 \rightarrow 1 secondary "excitation" & the primary electron loses the equivalent energy

▲ 臣 ▶ | ▲ 臣 ▶ | |

Hole relaxation: Auger process (\approx cross-relaxation) & x-ray fluorescence

 \rightarrow 1 secondary "excitation" & the primary hole lost some energy

э

Auger process & multiplication: about the same

・ロ・・(型・・モー・・モー・

At the end of the first relaxation stage $E < E_{gap}$ then interaction with lower energies species (defects, phonon...)

A B > A B >

Still some migrations over tens of nanometers

Kirkin et. al. IEEE TNS2012

æ

When thermalized (relaxed), energy transfer toward lower energy species (activator, traps & excitons)

글 🖌 🔺 글 🕨

 \rightarrow may induce delay, quenching, bright-burn: it depends on the temperature

글 🖌 🔺 글 🕨

Even with a fast emitter, the overall process can be slow

An illustration of the evolution of the decay only due to the transfer process (the same emitter: $LiYF_4:Ce^{3+}$)

Belsky et. al. J.Phys. Chem. Lett. 2013

A B > A B >

э

Summary picture

FAST(<100ps)+ MIGRATION

- The timing driven by the slowest process
- Heat, Light generation & trapping
- $\# photons = \frac{E_{gamma}}{(2 \sim 3)E_g}SQ$
- The light yield should be proportional to the energy of the primary particle.

э

And it is not

Valentine, IEEE TNS, 1998

Chewpraditkul, IEEE TNS, 1998

・ロ・・(型・・モー・・モー・)

æ

A few words about non-proportionnality

A few words about non-proportionnality

Analytical model, Bizarri et. al. JAP 2009

How to analyze it?

- and also K-dip spectroscopy (Khodyuk et. al., JAP, 2010)

э

A few words about non-proportionnality

spread of the charges/excitations depends on the initial energy

- ullet \to from event to event the yield changes
- ullet
 ightarrow ightarrow bad for the energy resolution
- ullet ightarrow the energy resolution is worse in non-proportional materials
- ullet ightarrow it requires modeling of the spatial distribution of excitations

A few words about non-proportionnality

An illustration of modeling the energy cascade / spatial distribution

Gao et al., JAP, 2013

∃ ► < ∃ ►</p>

Concluding remark: take care with nanoscintillators

+ traps, effective index of refraction, confinement effects \ldots

A bit of litterature

par Christophe DUJARDIN

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 15, NO. 8, AUGUST 2011

Needs, Trends, and Advances in Inorganic Scintillators

C. Dujardin[®], E. Auffray, E. Bourret-Courchesne, P. Dorenbos, P. Lecoq[®], M. Nikl[®] A. N. Vasil'ev, A. Yoshikawa[®], and R.-Y. Zhu[®]