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Extrinsic or intrinsic scintillator?

Extrinsic — emission from luminescence centers

Intrinsic — exciton related luminescence (free exciton, self-
trapped ex., self-activation luminescence)
band-to-band absorption and emission
0 Wide band gap semiconductors

- In some materials — both types (ZnO:Eu(RE) x
Zn0:Ga(La,In); HfO,:Ti x HfO,)
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Properties - intro

» Properties of nano-oxides are often
strongly influenced by their origin;
their preparation and treatment
thus deserve special attention

SPARTE

Scintillating Porous Architectures
for RadioacTivE gas detection

What exactly are the nano-oxides? MO, ® nano

» Nanoparticle:
» Object with each dimension < 100 nm (arbitrary value), in liquid / free-standing

w )
W 400 nm (purple) light 0.0 %

= colloid

» Nanocrystalline material:
» Single crystalline domains < 100 nm, particles can be much bigger

» Nanomaterial:
» Object with at least 1 dimension < 100 nm
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Preparation of nano-oxides

Arbitrarily divided into:

» Physical™ methods - large equipment, small amounts can be
synthesized, usually ,clean™; high-energy milling, spray pyrolysis,
deposition from gas (PVD), ...

» ~Wet chemical®™ methods - formation of solids / colloids in liquids,
large amounts can be prepared, some residual chemicals; sol-gel
reactions (alkoxide hydrolysis and polycondensation, Pechini
method, urea hydrolysis), co-precipitation, ...

» ,Combined™ methods - use both physical and chemical aspects;
hydrothermal synthesis, solid-state reactions, chemical vapour
deposition, radiation & photochemical synthesis, ...

» Separation of nano-oxides (sol or gel) from liquids:
» Filtration / centrifugation and drying — collapsed xerogel, serious agglomeration
» Freeze-drying of gel (lyophilization) — H,O sublimes from the frozen gel

» Super-critical drying — exchange of solvent with super-critical fluid (e.g. CO,)
and its evaporation: the gel does not collapse and aerogels can be prepared
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Formation of oxides

» How easily can be oxides directly formed by ,wet" chemical
methods?

Zn0O

YAG
(Y5Als045),
LUAG
(LusAlsO45)

» Multi-component oxides R.S.T, /,0O,:
virtually impossible (Gd, Lu)-(Al.Ga).0
r 3 r 512
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TG, DTA

Formation of oxides

» Indirect preparation = an (amorphous) solid precursor transforms
into ~ thermodynamically stable! oxides during heat treatment
» Transition to crystalline oxide is observable by:
» DTA (differential thermal analysis) — exothermic peak
» XRD (X-ray diffraction) — emergence of characteristic reflections
» electron microscopy (TEM) - diffraction fringes / SAED patterns
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1 Phase diagrams should always be consulted: e.g. Gd;Al;0,, is semi-stable with respect to GdAIO; + Al,O,
while LUAlO; (or YAIO; at low temperatures) is unstable with respect to Lu;AlsO,, + Lu,Al,Oq / Lu,05
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Size of nanoparticles

Crystallite size — XRD (peak broadening), tiny single crystals
Grain size - SEM / TEM, size of physical objects

Hydrodynamic diameter — DLS, grain with bound ligands
/ solvent (not relevant in powders, crucial in colloids)

Rabanel et al.,
10.1016/j.jconrel.2014.04.017

Coressize .
(TEM/SEM) » Heat treatment of nano-oxides causes coalescence (crystal
size growth), necking and sintering (grain size growth)

crystallites
intergrown

. amorphous
LUAG precursor
20 850°C
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Phase purity

» Calcination / annealing temperature affects nano-oxide composition

Kinetic aspect — phase changes during YAG synthesis:
Inhomogeneous precursor: diffusion-rate controlled process

>

>

»

Al,O5
+—
XRPD of Iyophilised YAG precursor (photochem. synthesis) — 3 phases
»  YAG (Y5Al;0,,) + Y,05 + YAM (Y,Al,Qg), no Al,O,
» The phase composition markedly improves

YAP Y505 see e.g. Kupp et al., 10.1557/jmr.2014.224
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Relative intensity

Phase purity

» Multi-component oxides require annealing at very high temperatures

to achieve phase-pure materials

» (Gd,Lu);(Ga,Al);0,,:Ce achieved ,phase purity" after 1400 °C

» Doubling of diffraction peaks / tail toward low 26 = not a single garnet phase;
improvement possible by longer annealing / higher temp.
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1Gd4(Gao,)0,, PDF #74-4305
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Annealing effects

» Luminescence intensity of dopant's emission usually increases with
annealing / calcination temperature

© Healing of structural / surface defects decreases the density and efficiency of

traps

» ® Particle size increases with temperature

» ® Some dopants / matrix elements can change their oxidation states
(Ln3* — Ln** when annealed in air: Ce, Pr, Tb)

» ® Some oxides can be volatilized (Ga,05, SiO,, Sb,0:)

»

Y,05:Eu
Cuba et al., J Nanopart

Res (2012) 14:794
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Annealing effects
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Annealing effects

» RL emission intensity of —LUAGIPr (300 °C)
most extrinsic nano-oxide £ _tuﬁgzir(l?gg o(C;)
scintillators increases S _L”AG:Pr (1200 °C)
with annealing timeor & UAG:Pr ( )

N
temperature o
. = Pr3+

» Decrease at some point  E LUAG:Pre
) > J. Fleismann, diploma
is probably connected = thesis 2022
with some adverse effect g

, s P s 4
/NG YAG:Ce (CrGd) 200 300 400 500 600 700 800
’3’ \ Cuba et al., Radiat Phys Wavelength [nm]

f ’\ Chem (2011) 80:957

Prolonged heating
at 1300 °C in air TAG:Ce (Tb3Al;0y;)
oxidized most of J. Indrei, dissertation 2022

. g : :
ICZ :;’ n Ith's éﬁse It Heating of TAG in air caused grey

= : - 1O d IOW colouration and very low RL intensity

450 550 s INtensity (TbO,_, is black)
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Other effects of nano-scale

In many garnet-based nano-oxides, the observed decay times of
dopants' photoluminescence (such as Ce3* or Pr3+ 5d — 4f) were
longer than in single crystals

4
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Other effects of nano-scale

» In many garnet-based nano-oxides, the observed decay times of
dopants' photoluminescence (such as Ce3* or Pr3+ 5d — 4f) were

longer than in single crystals

» Parasitic processes always decrease
the PL decay times

» The emission rate is known to
depend on refractive index n

Dujardin et al., IEEE Trans Nucl Sci
(2010) 57:1348

» Nanoparticle perceives n from itself
and the surrounding medium

2

Ay~ Di Bartolo, Optical
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f-(n*+2)"n 1968, pp. 403-414.

1.0
» Niag = 1.84, Npedivm = 1 ... 1.52
calculated filling factors of 58 to

77 % in original samples (2012)
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Possible applications

» Nanoparticle cores for bio/medical applications h,  Energy
» PDTX conjugates (X-ray induced Photodynamic Therapy) L T'T??Sfer
» Cathodoluminescence imaging C

Photo- B
Chemistry
=Cell death

hv

e Photosensitizer

LUAG:Ce & lymphocytes
Popovich et al., IEEE TNS (2020) 67:962

» Precursors for transparent ceramics fabrication

LUAG Spark Plasma Sintering

Pejchal et al., Opt Mater (2016) 53:54 Wﬂw

» Precursors for aerogels 0 1
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Thank you for your attention!

Next: Lenka Prouzova Prochazkova
(intrinsic scintillators)
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Fig. 4. RL spectra of GGAG:Ce Mg powders calcined in air or Ar (1500 °C:
10 °C/min: no dwell time) relative to powder BGO emission intensity. Weak
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