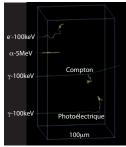
Scintillation uses

- The primary interaction
- The detection modes
- What kind of information can be obtained?

(E)


The interaction depends on the particle type and photon \neq massive particles.

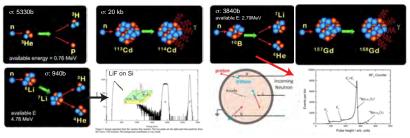
- If photon (x, γ) ightarrow absorption or transmission
 - $\rightarrow \ \mathsf{Photoelectric-Compton}$
 - \rightarrow pair creation (if E>2x511keV)
- If massive charged particle
 - \rightarrow energy loss function $\left(-\frac{dE}{dx}\right)$

The interaction depends on the particle type and photon \neq massive particles.

- If photon $(x,\gamma) \rightarrow$ absorption or transmission \rightarrow Photoelectric-Compton
 - \rightarrow pair creation (if E>2x511keV)
- If massive charged particle \rightarrow energy loss function $\left(-\frac{dE}{dx}\right)$
- α: M_α ≫M_{e⁻}, Bethe-Bloch formula (same for protons)
- electrons (β⁻): inelastic scattering or Bremsstrahlung (X-ray emission)

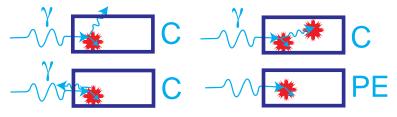
Simulation with GEANT4

example with NaI:TI


通 と く ヨ と く ヨ と

Interactions with neutrons are different (restricted to detection)

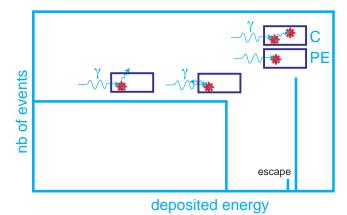
 Fast neutrons: energy transfer through collisions with nucleus of similar mass (H) (The reason why plastics are preferred) Then the proton interacts as charged massive particle → light


Interactions with neutrons are different (restricted to detection)

- Fast neutrons: energy transfer through collisions with nucleus of similar mass (H) (The reason why plastics are preferred) Then the proton interacts as charged massive particle → light
- Thermal neutrons: capture by nucleus with high thermal neutron capture cross-section

It can lead to a very complex pulse height spectrum

interaction with photons (E<2x511keV)

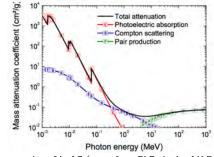


Compton and Photoelectric effects occur

- It generates a fast electron (which will generate the light at the end)
- In the case of Compton scattering, a γ photon generally escapes from the crystal and the full energy of the incoming γ is not deposited in the crystal. The energy deposition depends on the scattering angle.
- In some cases (top right), the secondary γ is absorbed by the crystal, it appears like a photoelectric event from the energy deposition point of view

interaction with photons (E<2x511keV)

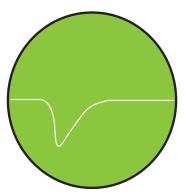
As a result, the statistics of the energy deposition following the interaction with a photon leads to this schematic histogram


Crucial to understand the spectroscopy, the energy resolution and the light yield measurement

about absorption

- Linear probability of interaction: $\mu = \frac{n_e \cdot \sigma_e}{Z_{eff}}$
- with n_e the density of electrons
- $Z_{eff} = W_A Z_A + W_B Z_B + W_C Z_C$ the effective atonic number of compound $A_X B_Y C_Z$ and W_i the mass fraction
- $\sigma_e = \sigma_{pe} + \sigma_c + \sigma_{pp}$ (various interaction cross sections)

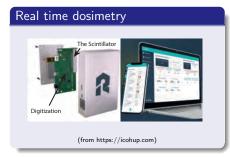
•
$$\sigma_{pe} \alpha \frac{Z_{eff}^5}{E_{\gamma}}$$
 (+ effect of K, L, M... edges)


•
$$\sigma_c \alpha \frac{Z_{eff}}{E_{\gamma}}$$

Mass attenuation of LuAG (curve from PhD thesis of K.Pauwels)

What kind of information can be obtained?

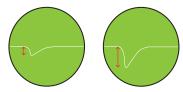
Counting mode



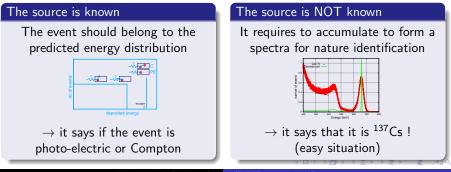
 BIP - $\mathsf{BIP}:$ there are some radiations \rightarrow GEIGER type detector

What kind of information can be obtained?

Counting and Integrating mode

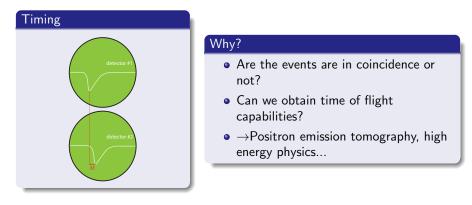

With pixelated photodetector Imaging I

+ 3D images, even videos


伺下 イヨト イヨト

What kind of information can be obtained?

Counting mode

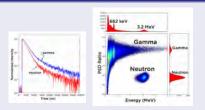


Information on the energy deposited during the event: 2 situations

What kind of information can be obtained?

Counting mode Information on the timing between 2 events in 2 detectors

What kind of information can be obtained?


Counting mode

Particle identification

- In some cases, the nature of the interaction changes the time response
- → It allows to distinguish various particles nature (neutrons & photons for ex.)
- called PSD: Pulse Shape Discrimination

Illustrations with a real signal

(from www.crystals.saint-gobain.com) Used a lot with plastic scintillators as well

• • = • • = •